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Modeling Enlargement Attacks
Against UWB Distance Bounding Protocols

Alberto Compagno, Mauro Conti, Antonio A. D’Amico, Gianluca Dini, Pericle Perazzo, Lorenzo Taponecco

Abstract—Distance bounding protocols make it possible to
determine a trusted upper bound on the distance between
two devices. Their key property is to resist reduction attacks,
i.e., attacks aimed at reducing the distance measured by the
protocol. Recently, researchers have focused also on enlargement
attacks, aimed at enlarging the measured distance. Providing
security against such attacks is important for secure positioning
techniques. The contribution of this paper is to provide a
probabilistic model for the success of an enlargement attack
against a distance bounding protocol realized with the IEEE
802.15.4a UWB standard. The model captures several variables,
like the propagation environment, the signal-to-noise ratio, and
the time-of-arrival (TOA) estimation algorithm. We focus on non-
coherent receivers, which can be used in low-cost low-power
applications. We validate our model by comparison with physical-
layer simulations and goodness-of-fit tests. The results show
that our probabilistic model is sufficiently realistic to replace
physical-layer simulations. Our model can be used to evaluate the
security of the ranging/positioning solutions that can be subject to
enlargement attacks. We expect that it will significantly facilitate
future research on secure ranging and secure positioning.

I. INTRODUCTION

Distance bounding protocols [1] are security protocols that
make it possible to determine a trusted upper bound on the
distance between two devices. They do this by measuring the
round-trip time between two messages that are unpredictable
for an adversary. The basic property of a distance bounding
protocol is to resist reduction attacks, which aim at reducing
the measured distance with respect to the real one. In short,
the adversary cannot reduce the distance, because she should
anticipate the messages which are instead unpredictable.

Recently, researchers have turned their attention also to the
opposite kind of attacks: enlargement attacks [2], [3], [4], [5].
In these attacks, the adversary aims at enlarging the measured
distance. The interest in solutions against enlargement attacks
is growing because they open the door to more scalable
secure positioning techniques [3], [4]. In this paper, we focus
on distance bounding protocols performed with the IEEE
802.15.4a ultra-wideband (UWB) physical protocol [6]. IEEE
802.15.4a UWB has been the first standardized ultra-wideband
protocol for precision ranging, capable of reaching sub-meter
precision in distance estimations. It is one of the most
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convenient choices for future implementations of wireless
distance bounding protocols [7]. We consider non-coherent
architectures, which are designed to be used in low-cost low-
power receivers, as indicated by the IEEE 802.15.4a UWB
standard [6]. Non-coherent schemes are the most interesting
ones for practical applications at the moment. Moreover, we
focus on external adversaries only, i.e., we suppose that the
devices that execute the distance bounding protocol are trusted.

To cause an enlargement on the measured distance, an
adversary must introduce a delay in the round-trip time. One
way in which an external adversary can do this is to mount an
overshadowing attack. This attack is hard to detect because,
unlike other attacks, it produces realistic enlargements without
introducing an unrealistic quantity of energy in the channel. In
the overshadowing attack, the adversary replays the messages
sent by the legitimate devices with a certain delay and a greater
power. In this way, she tries to make the victim receivers
“hook” to the malicious signals instead of the legitimate ones.

Contribution This paper brings the following contributions:

• We provide a probabilistic model of the outcome of an
overshadowing attack against a distance bounding proto-
col realized with IEEE 802.15.4a UWB. Our model takes
into consideration several variables, like the propagation
environment, the signal-to-noise ratio, and the time-of-
arrival (TOA) estimation algorithm.

• We evaluate the soundness of our model by comparing
it to attack outcomes generated by physical-layer simula-
tions, and by performing goodness-of-fit tests. The results
show that our model is sufficiently realistic to replace
physical-layer simulations.

• We finally develop a Matlab tool based on our model,
capable of simulating attacked and non-attacked TOA
estimations. The tool allows researchers to evaluate the
security of the ranging/positioning solutions that can be
subject to enlargement attacks. We make such a tool
available to the research community.

Organization The rest of the paper is organized as fol-
lows. Section II introduces the state of the art. Section III
motivates the importance of overshadowing attacks. Section
IV introduces the reference distance bounding protocol, the
IEEE 802.15.4a UWB signal format, and the TOA estimation
algorithm of the receiver. Section V analyzes the effects of
an overshadowing attack. Basing on this analysis, Section
VI introduces the probabilistic model of the attack outcome.
Section VII studies the parameters of the model and evaluates
its soundness. Final conclusions are drawn in Section VIII.
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II. RELATED WORK

Distance bounding protocols were first proposed by Brands
and Chaum [8]. Such protocols leverage single-bit challenge-
response rounds to establish a secure upper bound on the
distance between two devices. Several variants of distance
bounding protocols have been proposed in the literature [1],
[9], [10], [11], having different properties in terms of re-
sistance to different threats, adversary’s success probability,
bit error tolerance, memory requirements, and so on. Three
classic threats are addressed in distance bounding: an internal
adversary (distance fraud), an external one (mafia fraud), or a
collusion between the two (terrorist fraud). While the original
protocols in [8] resisted only to the first two frauds, more
recent proposals (e.g., [10], [11]) offer provable resistance
also to the latter one. Distance bounding protocols have been
adapted also for packet-based communications [7].

Clulow et al. [12] showed that distance bounding protocols
are vulnerable to low-level attacks, in which an adversary
attacks directly the physical-layer procedures in order to obtain
a distance reduction. These kinds of reduction attacks was ana-
lyzed by Poturalski et al. [7] within the IEEE 802.15.4a UWB
protocol. The authors of [7] proposed a set of countermeasures
as well. In this paper we focus on enlargement attacks, not on
reduction ones. Notably, all the countermeasures in [7] involve
the format and the decoding method of the payload part of the
packet. Our probabilistic model is instead based on orthogonal
aspects, namely the format of the preamble part and the TOA
estimation algorithm. As a consequence, our model remains
valid when the countermeasures in [7] are applied.

Poturalski et al. [13] presented the Cicada attack, a simple
physical-layer reduction attack against IEEE 802.15.4a UWB.
The authors proposed also a set of countermeasures, some
of which introduce new security-driven TOA estimation al-
gorithms. They tested these algorithms only against reduction
attacks, not against enlargement attacks. In this paper, we refer
only to “classic” TOA estimation algorithms [14]. We leave
the study of enlargement attacks against non-classic ones as
future work.

On the other hand, the interest in solutions against enlarge-
ment attacks is growing. Chiang et al. [2] proposed a way
to detect enlargement attempts by measuring the difference
of the received power on two antennas. Given the way a
signal propagates in a medium, if such difference is low, then
the signal will come from far away, and vice versa. Wang
et al. [5] proposed a similar countermeasure, measuring the
difference on received power of two multipath components on
the same antenna. Both these countermeasures ([2] and [5])
defend against a (single) internal adversary, i.e., a participant
to the protocol which tries to make its distance from the other
participant appear larger. In the case of an external adversary,
like the one we consider in this paper, these countermeasures
are ineffective. Indeed, an external adversary can deploy a ma-
licious device farther than the honest one, and then replay the
legitimate signal from there. In so doing, the replayed signal
actually comes from a far source, so the countermeasures are
deceived.

A solution to enlargement attacks mounted by external

adversaries was proposed by Dini et al. [3]. The authors
focused on jam-and-replay attacks, which consist in jamming
the reception of a legitimate packet, and then replaying it
afterwards. The solution is based on the observation that,
to avoid packet collisions, the adversary must wait for the
legitimate transmission to end. As a consequence, the resulting
enlargement is quite big, because proportional to the packet
transmission time. Thus, jam-and-replay attacks can be de-
tected by a threshold on the maximum measured distance. In
this paper, we focus on overshadowing enlargement attacks,
which are not detectable by simple threshold mechanisms.

Taponecco et al. [4] showed that, in the IEEE 802.15.4a
UWB ranging standard, an overshadowing-based enlargement
attack has a random outcome and is poorly controllable by
the adversary. In this paper, we analyze the different sources
of randomness, and we provide a probabilistic model of the
outcome of an overshadowing attack.

To develop our model, we used the results of Sharp and
Yu [15], which introduced a probabilistic model for the error
of threshold-based TOA estimation algorithms. We focus on
attacked TOA estimations, while [15] focused on non-attacked
ones. Nevertheless, we will see later that an attacked TOA
estimation sometimes behaves like a non-attacked one. To
represent these cases, we used the Sharp and Yu’s model inside
ours as a building block.

III. MOTIVATION

In the original applications of distance bounding protocols,
the resistance against enlargement attacks was not necessary,
as the only objective was to assure the proximity of two de-
vices. More recently, with the emergence of secure positioning,
the enlargement resistance has become an attractive feature.
Basically, this is because a distance bounding protocol which
resists also enlargement attacks is de facto a secure distance
estimation technique, which can be fruitfully applied to tri-
lateration in order to estimate a position in a secure manner.
Though some secure positioning techniques based on “classic”
distance bounding exist (e.g., [16], [17]), they generally offer
less coverage compared to ordinary trilateration, as they must
tolerate the possibility of distance enlargements [3], [4]. As
shown by [16], if the anchors use distance bounding protocols
to measure the distances from the device being localized, only
the positions inside the polygon formed by the anchors are
trusted (and thus covered). With reference to Fig. 1, position
A (inside the polygon) cannot be falsified without reducing at
least one of the three distances from the anchors.

Fig. 1. Trusted and untrusted measured positions.

Since reducing the measured distance is infeasible in a distance
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bounding protocol, position A is trusted. On the other hand,
position B (outside the polygon) is not trusted, because it
could have been falsified by an adversary performing three
distance enlargements. If the distance bounding protocols
resist enlargement too, these positions are covered as well,
and the localization system generally needs less anchors to
cover the same area. To sum up, solutions against enlargement
attacks are relevant because they open the door to more
scalable secure positioning techniques.

For an external adversary, the only way to obtain an enlarge-
ment on the distance estimate is to delay the packet TOA esti-
mate. We identified three ways to do that: (a) jam-and-replay
attack, (b) ADC resolution attack, (c) overshadowing attack.
In the following, we explain and discuss these three ways,
and we argue that the most promising one is overshadowing,
since it produces realistic enlargements and, at the same time,
it does not introduce an unrealistic amount of energy into the
channel.

Jam-and-replay attack acts by jamming a legitimate packet,
and then replaying it afterwards. Note that, in order to avoid
packet collisions, the adversary has to wait for the legitimate
communication to end before replaying it. This, as shown
in [3], forces her to introduce large delays, greater than
or equal to the packet transmission time. In the specific
IEEE 802.15.4a UWB protocol, the packet transmission times
are in the order of milliseconds [6]. Thus, jam-and-replay
attack would produce unrealistic enlargements, in the order
of hundreds of kilometers, which are easy to detect by means
of simple threshold mechanisms.

On the other hand, ADC resolution attack acts by repeating
a legitimate communication with a certain delay and a far
greater power. In this way, the adversary causes an anomalous
behavior of the analog-to-digital converter (ADC) of the
receiver. Before digitizing it, the input signal is usually passed
through an automatic gain control (AGC) stage, which levels
out the peak amplitude at a constant value by reducing or
increasing it. By transmitting with strong power, the adversary
forces the AGC to reduce the signal’s amplitude so much
that the honest signal falls below the minimal resolution of
the ADC, and thus gets deleted. ADC resolution attack can
produce realistic enlargements, because it has not to wait
for the end of the legitimate communication. However, the
adversary has to transmit with a very strong power, which is
unrealistic for any legitimate communication. ADC resolution
attack can be detected by enforcing a limit on the received
power.

Finally, overshadowing attack acts by repeating a legitimate
communication with a certain delay and a (not too much)
greater power. The receiver thus hears both the legitimate
and the malicious packets in a superimposed way, without
being able to distinguish them. As a result, the overshadowing
attack can effectively introduce enlargements which are hard
to detect. It does not cause unrealistically wide enlargements
and does not introduce an unrealistically high energy into the
channel. To sum up, though the effect of an overshadowing is
not always controllable [4], it however results to be the most
convenient strategy by which an external adversary can obtain
enlargements.

A. Alternatives to IEEE 802.15.4a UWB

IEEE 802.15.4a UWB is not the only PHY protocol which
has been proposed to implement distance bounding. Some
researchers proposed that ad-hoc UWB protocols should be
designed from scratch with distance bounding in mind [12].
To the best of our knowledge, no such ad-hoc protocol under-
went a standardization process, nor found any commercially
available implementation. The non-security properties of such
protocols (e.g., robustness, ease of use, power efficiency) have
not been studied in deep yet. On the other hand, transceivers
implementing the IEEE 802.15.4a UWB standard are already
present in the market [18]. Poturalski et al. [7] showed how
to adapt IEEE 802.15.4a UWB for distance bounding with
a limited number of changes, in such a way to preserve its
properties. Another alternative is the IEEE 802.15.4a chirp
spread spectrum (CSS) physical protocol [6], standardized by
the same amendment of UWB. IEEE 802.15.4a CSS allows for
TOA-based ranging as well, and transceivers implementing it
are already present in the market [19]. However, the UWB
standard is more suitable than the CSS one for distance
bounding applications, because it can have shorter symbol
durations. As shown by [12], shorter symbols make the
protocol less vulnerable to low-level reduction attacks. We
therefore conclude that IEEE 802.15.4a UWB is definitely
a convenient choices for future implementations of wireless
distance bounding protocols.

IV. PRELIMINARIES

In the following, we introduce the reference distance bound-
ing protocol, the IEEE 802.15.4a UWB signal format, and the
TOA estimation algorithms of the receiver.

A. Threat Model and Reference Distance Bounding Protocol

A distance bounding protocol determines a secure upper
bound on the distance between two devices, namely a verifier
(V ) and a prover (P ), by measuring the round-trip time be-
tween unpredictable messages. Originally, distance bounding
protocols involved the transmission of single bits (rapid bit
exchange) [8]. In recent years, they have been adapted for
packet-based communications [7], which are more efficient for
wireless protocols. Distance bounding protocols can defend
against reduction attacks under three adversary models: a
dishonest prover wanting to cheat about its distance from
the verifier (distance fraud), an external adversary wanting
to make the prover-verifier distance appear different (mafia
fraud), and a collusion of the two (terrorist fraud). In contrast,
it is hard to defend against a dishonest prover playing an
enlargement attack, since she can introduce an arbitrary delay
in the round-trip time. In this paper, we consider external
adversaries only, and thus assume the prover to be honest.
Under this assumption, to ease the presentation, we consider
a simpler class of distance bounding protocols, which resist
external adversaries only. An example of such protocols (taken
from [7]) is the following:

REQ V −→ P : nV
ACK P −→ V : nP
AUTH P −→ V : authK(nV , nP ).
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The request packet (REQ) and the acknowledgment packet
(ACK) convey respectively nV and nP , which are random se-
quences of bits, unpredictable by the adversary. The authenti-
cation packet (AUTH) authenticates the whole communication
by means of a secret key K shared by prover and verifier.
The function authK(·) represents a message authentication
code, for example an HMAC. This protocol does not allow an
external adversary to impersonate the prover, because she can-
not forge the final authentication code. Moreover, the protocol
avoids reduction attacks, because the adversary cannot predict
nV or nP and transmit them in advance. The probabilistic
model presented herein is valid as well for more complex
distance bounding protocols, as long as IEEE 802.15.4a UWB
is used.

The verifier measures the round-trip time (TRTT ) between
the request packet and the acknowledgment packet. To do this,
both packets are transmitted by means of the IEEE 802.15.4a
UWB protocol, which permits us to measure the time of
arrival of a packet with nanosecond precision, corresponding
to centimeters in terms of distance. We call processing time
(Tproc) the time interval between the reception of the REQ at
the prover and the transmission of the ACK. The processing
time is assumed to be known by the verifier. The distance (d)
can thus be estimated as:

d =
TRTT − Tproc

2
· c, (1)

where c is the speed of light.

B. IEEE 802.15.4a UWB Signal Format

IEEE 802.15.4a UWB [6] has been the first standard-
ized Impulse-Radio Ultra-Wideband (IR-UWB) protocol for
precision ranging, and it is a convenient choice for future
implementations of wireless distance bounding protocols [7].

An IEEE 802.15.4a UWB packet is called PHY protocol
data unit (PPDU), and consists of three parts: a synchro-
nization header (SHR), a PHY header (PHR), and a PHY
service data unit (PSDU). The SHR part is the one allowing
for the estimation of the time of arrival of the packet. The
PHR contains information about the modulation kind of the
successive PSDU part. Finally, the PSDU part contains the
payload. In our case, the unpredictable quantities nV and nP
are conveyed by the PSDU. The SHR is made up of two
blocks: a synchronization preamble (SYNC) and a start-of-
frame delimiter (SFD).

As shown in [4], the overshadowing attack influences the
outcome of the SYNC processing at the receiver. The math-
ematical model of the signal transmitted during the SYNC
is [6]:

s (t) =

NSYNC−1∑
i=0

ψ (t− iTsym) , (2)

where NSYNC = 1024 is the number of symbols belonging to
the SYNC, and Tsym = 3968ns is the symbol duration. The
signal ψ(t) is described as follows:

ψ (t) =

Kpbs−1∑
k=0

dkp (t− kTpr ), (3)

where {dk}
Kpbs−1
k=0 is a perfectly balanced sequence of

Kpbs = 31 elements with values {−1, 0,+1}, and Tpr =
Tsym/Kpbs = 128ns is the pulse-repetition period. The signal
p(t) is an ultra-short causal pulse having a band-pass spectrum,
with a bandwidth B = 500 MHz centered around the fre-
quency f0 = 4.5 GHz. More precisely, p(t) = c(t) cos(2πf0t),
where c(t) has the shape shown in Fig. 2. The rise time (Tr)
of c(t) is the time period from the beginning of the pulse to
its peak.

 0  5  10  15  20

Tr=2.6ns

c
(t

)

t [ns]

Fig. 2. Monocycle pulse shape.

Propagation occurs on a multipath channel, in which each
propagation path is characterized by a different attenuation and
delay. Denoting by h(t) the causal channel response to p(t),
the received signal can be written as:

r(t) =
NSYNC−1∑

i=0

Kpbs−1∑
k=0

dkh(t−kTpr−iTsym−tTOA)+w(t), (4)

where w(t) is white thermal noise. In the above equation,
tTOA is the time of arrival of the signal at the receiver, i.e.,
the parameter we want to measure. It can represent the time
of arrival of the REQ at the prover, as well as that of the ACK
at the verifier.

C. Receiver Architecture and TOA Estimation Algorithm

To better understand the effects of an overshadowing attack
against an IEEE 802.15.4a UWB receiver, it is necessary to
give some details on the physical-layer procedures. We focus
on threshold-based UWB ranging schemes, which are the
most widely used in UWB localization applications [20], [21],
[22]. Moreover, we consider a simple non-coherent energy-
based receiver, which guarantees high ranging precision with
low cost and low power consumption. Coherent receivers are
capable of more precision at the same signal-to-noise ratio,
but they are more expensive and power consuming. We leave
the study of overshadowing attacks against coherent receivers
for future work.

The received signal r(t) is first passed through a band-
pass filter (BPF), to remove the extra-band noise, and then
is demodulated in a square-law device followed by a low-pass
filter (LPF). Assuming that the h(t)-pulses in Equation 4 do
not overlap, it is readily shown that the LPF output, y(t), has
the following form:

y(t) =
NSYNC−1∑

i=0

Kpbs−1∑
k=0

d2
k×q(t−kTpr−iTsym−tTOA)+ny(t). (5)
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In this equation, ny(t) is a noise term originating from the
signal×noise and the noise×noise interactions in the square-
law device, and q(t) ∆

= h2(t)⊗hLPF (t), where hLPF (t) is the
impulse response of the LPF, and ⊗ denotes the convolution
operation. In general, q(t) shows a number of peaks, each of
which corresponds to the arrival of a signal echo through a
different propagation path. The first peak indicates the arrival
through the shortest path. The TOA estimation algorithm is
concerned with the estimation of tTOA, which is the time of
arrival of the first peak of the first q(t)-pulse of the preamble.

The signal y(t) is passed through an analog-to-digital con-
verter (ADC) before being processed by the TOA estimation
algorithm. The ADC takes samples of the signal with a
sampling period Ts. We fixed Ts = 1ns, as it is the minimum
frequency to correctly sample the 500MHz-bandwidth UWB
signal according to the Nyquist-Shannon theorem.

In the present paper, we consider two classic TOA esti-
mation strategies, namely jump-back search-forward (JBSF)
and search-back (SB), which provide significantly different
outcomes when attacked by overshadowing. In particular, we
refer to the algorithms described and analyzed in [21]. With
both JBSF and SB, the TOA estimation is performed in three
phases, as shown in Fig. 3:

1) Frame detection. This phase decides through power
measurements whether a packet is present or not.

2) Fine time acquisition. This phase produces an estimate
of the arrival time tTOA with an ambiguity of multiples
of Tsym .

3) SFD detection. This phase disambiguates the estimate
of tTOA by detecting the position of the SFD through
correlation.

Fig. 3. TOA estimation block diagram.

The fine time acquisition phase provides a measure of a time
parameter, say τLP ∈ [0, Tsym), which is related to tTOA by
tTOA = tfd + τLP −NfdTsym , where tfd is the time at which
the frame detection phase declares the presence of the packet,
and Nfd ∈ N is the number of preamble symbols used for
frame detection. The successive SFD detection phase resolves
the Tsym -ambiguity by estimating Nfd .

We now focus on the fine time acquisition phase. Indeed,
as shown in [4], this is the only phase of the TOA estimation
whose result is influenced by the overshadowing attack. The
fine time acquisition phase is split in two sub-phases, namely
the SFE (τ) computation and the leading-peak search. The
SFE (τ) computation consists in combining the signal y(t) at
the output of LPF with cyclic-shifted versions of the sequence
{d2
k}
Kpbs−1
k=0 . This produces a Tsym -long signal, SFE (τ), whose

support is the interval τ ∈ [0, Tsym), which is used for
the estimation of τLP . More precisely, in each interval τ ∈

[mTpr , (m+ 1)Tpr ), with m = 0, 1, . . . ,Kpbs − 1, SFE (τ)
is given by:

SFE (τ)= 1
M

M−1∑
i=0

∑
k∈I(m)

d2
|k−m|Kpbs

y(τ+tfd+(k−m)Tpr+iTsym), (6)

where M < NSYNC is the number of preamble symbols
exploited for the fine time acquisition, and |u|U means “u
modulo U .” The set I(m) contains the indices k such that
d2
|k−m|Kpbs

= 1 and d2
|k−m−1|Kpbs

= 0. Mathematical details

apart, the computation of SFE (τ) essentially leverages the
periodicity of the preamble signal and the autocorrelation
properties of the sequence {d2

k}
Kpbs−1
k=0 to improve the signal-

to-noise ratio.
Fig. 4 shows an example of SFE (τ) function.

Fig. 4. Example of SFE (τ).

From now on, the pulses will be represented in the figures as
needle-shaped. Actually, the real pulses have a non-negligible
time duration, so they sometimes overlap to each other in
the SFE (τ) function. We neglect this when possible, in order
to ease the explanation. As seen in Fig. 4, SFE (τ) is Tpr -
periodic, except that the periods repeat with different ampli-
tudes, and some of them contain only thermal noise (noise-
only periods). Conventionally, we refer to the period with the
greatest amplitude as the first period. The successive one is the
second period, and so on. If no overshadowing takes place, the
first period contains the maximum of SFE (τ) (highest peak),
and, shortly before, a pulse corresponding to the signal echo
through the shortest path (leading peak). The highest peak is
in position τHP , while the leading peak is in position τLP .
The second and the third periods are attenuated by 6 decibels
with respect to the first one. The period preceding the first one
is a noise-only period.

The leading-peak search is the sub-phase by which JBSF
and SB differ. In particular, the JBSF algorithm (Fig. 5) starts
from the highest peak position τHP , jumps back by TJB
seconds, and then proceeds forward looking for the first time
SFE (τ) goes beyond a given noise threshold. This gives the
estimate of τLP . On the other hand, the SB algorithm (Fig. 6)
starts from τHP , and searches backward until SFE (τ) goes
below the noise threshold and continues to be under for a
TSB -wide window (noise-only region). This gives the estimate
of τLP . The JBSF and the SB algorithms treat SFE (τ) as a
“circular” function. That is, if they jump or search below the
τ = 0 limit, they continue from τ = Tsym , and vice versa.

Note that the SB algorithm could search backward in-
definitely if it does not find a TSB -long noise-only region.
However, in those environments where the IEEE 802.15.4a
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Fig. 5. Jump-back search-forward algorithm.

Fig. 6. Search-back algorithm.

UWB has been designed to work, it is statistically impossible
to find the leading peak more than Tpr seconds earlier than
the highest peak. If a TSB -long noise-only region is not
found after a backward search of Tpr , it is highly probable
that an interfering signal (not necessary malicious) is present.
We assume that, after a backward search of Tpr , the TOA
estimation fails and produces an error (long-search error).

The noise threshold is tailored on the basis of the thermal
noise statistics. We fixed it in such a way that a noise-
only sample of SFE (τ) has a probability of 10−5 of being
above it, i.e., of being wrongly interpreted as a signal (false
alarm). In addition, we set TJB = 60ns, as recommended by
[21], and TSB = 30ns, as determined experimentally through
computer simulations to guarantee the optimal performance (in
terms of mean squared error) of the SB algorithm in indoor
environments. Finally, we denote by SNRh the signal-to-noise
ratio of the (legitimate) signal at the receiver.

V. OVERSHADOWING ATTACK

Since the distance measurement comes from the round-
trip time, the adversary’s aim is to enlarge it. The only
way for an external adversary to do that is to delay the
packet TOA estimate at the verifier and/or at the prover. The
overshadowing attack is one of the most promising ways in
which an external adversary can cause an enlargement against
a distance bounding protocol without being detected. This is
because it produces realistic enlargements and at the same time
it does not introduce an unrealistic amount of energy into the
channel.

In the overshadowing attack, the adversary repeats a legit-
imate packet with a certain delay and a higher power. In this
way, she tries to “overshadow” the legitimate communication
with a delayed copy of it. At the signal level, the adversary
tries to deceive the receiver into thinking that the malicious
signal is the legitimate one that took the shortest path, while
the (true) legitimate signal is an echo of it. The attack starts

in the presence of a legitimate transmission of a request or an
acknowledgment packet. The adversary has first to synchronize
with the ongoing communication. It takes some of the SYNC
initial symbols to do that. Then, she starts transmitting the
replayed copy (skipping those initial symbols). The replayed
signal is timed in such a way to arrive at the receiver shifted
of a certain delay (overshadow delay, ∆ovrs ) with respect to
the legitimate one. During the transmission of the successive
PSDU part, a copy of it is replayed in the same way. We
denote by SNRm the adversarial signal-to-noise ratio, i.e.
the signal-to-noise ratio of the malicious signal at the receiver.
The adversarial signal-to-noise ratio must be greater than the
legitimate one (SNRm > SNRh), but not too much greater,
otherwise the attack will be easily detectable.

We assume that the adversary knows exactly the distance
between transmitter and receiver, and her distance from the
receiver. This is a necessary condition for the malicious signal
to arrive at the receiver with the desired delay. Note that if the
adversary is too much far from both transmitter and receiver,
she could not be able to replay the unpredictable payload bits
timely. With reference to Fig. 7, the replayed payload bits
propagate through the prover-adversary-verifier (PMV) path,
while the legitimate ones through the direct prover-verifier
(PV) path.

Fig. 7. Possible positions of prover (P), verifier (V), and adversary (M) in
an overshadowing attack (against ACK).

The difference between the two propagation times cannot be
greater than the overshadow delay that the adversary wants to
introduce. More precisely:(

PM + MV − PV
)
/c+ TM,proc ≤ ∆ovrs , (7)

where PM, MV, PV are respectively the prover-adversary,
adversary-verifier, and prover-verifier distances, and TM,proc is
the processing time of the adversary. Such a processing time
could be zero or even negative, if the adversary employs time-
gaining replay techniques like early bit detection or deferred
bit signalling [12].

In addition, we assume that the adversary enjoys a Gaussian
channel towards the victim receiver. A Gaussian channel is
characterized by an impulse response showing a single pulse,
without secondary echoes. In practice, a Gaussian channel can
be obtained with a transmitter very close to the victim receiver,
or by employing a highly directional antenna towards it. This
gives more power to the adversary, because she can control
precisely how the malicious signal is received by the victim.
As a consequence, the attack is more controllable [4].

Fig. 8 shows the effect of an overshadowing attack against
the JBSF algorithm. The waveform SFE (τ) has a component
due to the legitimate signal, and a component (the strongest
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Fig. 8. Overshadowing attack against JBSF. The round-headed pulses
correspond to the legitimate signal, the triangle-headed pulse to the malicious
one.

one) due to the malicious signal, which arrives at time
τLP + ∆ovrs . From Fig. 8 it is clear that, if the overshadow
delay is such that the leftward jump falls after the true
leading peak, the leading-peak search will provide for a wrong
estimate of it (τ̂LP 6= τLP ). A similar effect can happen
on the SB algorithm as well. We define the outcome delay
(∆out = τ̂LP − τLP ) as the timing delay actually obtained by
the adversary in the estimate of the leading peak. The outcome
delay directly translates into an equal delay in the packet TOA
estimate, which in turn translates into an enlargement in the
estimated distance (d̂):

d̂ = d+
∆out

2
· c. (8)

Depending on the legitimate propagation channel and the
overshadow delay, the overshadowing attack can fall into three
cases:
• Case 1. The first pulse of the legitimate signal is iden-

tified as the leading peak. Case 1 captures the case in
which the attack has no effect. However, due to the
(quasi-)periodicity of SFE (τ), replicas of the leading
peak repeat with a period of Tpr . Accordingly, Case 1
captures also the cases in which a replica of the first pulse
is identified as the leading peak, causing an enlargement
of multiples of the pulse-repetition period.

• Case 2. A non-first pulse of the legitimate signal, or a
replica of it, is identified as the leading peak. In this
case, the attack produces an enlargement which may be
not controllable by the adversary, since it depends on the
propagation channel between the verifier and prover.

• Case 3. The malicious pulse is identified as the leading
peak. In this case, the adversary is always able to control
the outcome delay.

Figs. 9 and 10 show examples of overshadowing attacks
falling into the three cases, against JBSF and SB, respectively.

Fig. 9. Three example attacks against JBSF. The solid-line attack falls into
Case 1, the dashed-line attack falls into Case 2, and the dotted-line attack
falls into Case 3.

Fig. 10. Three example attacks against SB. The solid-line attack falls into
Case 1, the dashed-line attack falls into Case 2, and the dotted-line attack
falls into Case 3.

This categorization is useful to understand the behavior of an
attacked TOA estimation algorithm, and to develop the prob-
abilistic model of the attack. Which case the attack falls into
strictly depends on the propagation channel between prover
and verifier, which is unknown by the adversary and hard to
estimate in practice. In addition, in Case 2 the adversary cannot
predict which secondary pulse will be identified as the leading
peak. As a consequence, the outcome of an overshadowing
attack is essentially random.

VI. OUR PROPOSED PROBABILISTIC MODEL

To model the outcome of the attack, we find an approx-
imation of the probability distribution function (pdf ) of the
outcome delay: f(∆out). Such a pdf is a composite of three
basic pdf’s, one for each case (Case 1, Case 2, Case 3). The
basic pdf for Case 1 represents the distribution of the outcome
delay conditioned to the event that the attack falls into Case
1, and so on. The resulting outcome delay will be described
by a composite pdf, obtained by summing scaled (and shifted,
see after) versions of the basic pdf ’s.

We designed heuristically the three basic pdf ’s. In particular,
we modeled them on the basis of histograms of the outcome
delay, obtained by signal-level simulations of the TOA esti-
mation algorithms. We justify the shape of such pdf ’s with
statistical considerations on the propagation channel and the
TOA estimation algorithm. The probabilistic model we present
here has been tested to be valid for SNRh ∈ [20dB, 50dB],
SNRm ∈ (SNRh, 51dB], and ∆ovrs ∈ (0ns, 384ns = 3Tpr ].
Such ranges permit us to capture the majority of practical
attack scenarios.
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A. Basic pdf for Case 1

In Case 1, the outcome delay is equivalent to an ordinary
TOA estimation error of a non-attacked receiver. Sharp and
Yu [15] introduced a pdf which models the error of a generic
threshold-based TOA estimation algorithm:

SharpYu(t) ,

{
(1/Tr) · 3α2(t/Tr)2

(α2+(t/Tr)3)2 if t ≥ 0

0 else.
(9)

where Tr is the rise time of the the signal pulse (the monocycle
in our case), and α is a shape factor which depends on the
signal-to-noise ratio (the legitimate one in our case). The
SharpYu distribution describes the random instant in which
the leading edge of the observed signal, which has a random
amplitude, passes the noise threshold and is thus detected by
the algorithm. It is a very general model which can be applied
to a large class of ranging systems, from relatively narrow
bandwidth Wi-Fi-based systems to UWB systems. We found
that the SharpYu pdf fits our simulated outcome delays better1

than other common error models (e.g., the Gaussian model).
It has such a simple analytical form because it simplifies out
a number of aspects, among which the error component due
to the time sampling of the signal. The time-sampling error is
distributed uniformly in [0, Ts), and it is added to the other
error components captured by the SharpYu distribution. We
therefore use a “sampled” version of the SharpYu pdf, given
by:

SampledSharpYu(t) , SharpYu(t)⊗ rect(t), (10)

where ⊗ is the convolution operation, and rect(t) is a Ts-wide
rectangular function:

rect(t) ,

{
1/Ts if t ∈ [0, Ts)

0 else.
(11)

We found that the SampledSharpYu distribution fits our sim-
ulated outcome delays better than the SharpYu distribution.

The TOA estimation error of a non-attacked receiver follows
a distribution exemplified by the histogram in Fig. 11. The
figure shows also the SampledSharpYu pdf, with three different
values of the parameter α. Lower signal-to-noise ratios corre-
spond to higher α’s. Note that, as α increases (and thus SNRh

decreases), the pdf spreads towards the right. This catches
the fact that, with a lower signal-to-noise ratio, the first pulse
passes the noise threshold later in time. The SampledSharpYu
distribution fits for Case 1 with both JBSF and SB algorithms.
Indeed, the errors of these algorithms (when not attacked)
differ to a negligible extent. The trend of the α parameter with
respect to the legitimate signal-to-noise ratio will be studied
in the parametrization section (Section VII).

Note that, for the purpose of evaluating the security of
ranging/positioning solutions, it is often important to simulate
also a honest scenario, in which the adversary is absent. The
SampledSharpYu pdf can be used for this aim, as it models
the TOA estimation error of a non-attacked receiver.

1In terms of mean log-likelihood (see Section VII).
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B. Basic pdf for Case 2

In Case 2, the outcome delay with JBSF follows a distribu-
tion exemplified by the histogram in Fig. 12.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

108 110  115  120  125  130  135

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 [

1
/n

s
]

t [ns]

Ts=1ns

Tcut=20ns

∆out samples

Staircase (s=2.00)

Staircase (s=1.11)

Staircase (s=0.50)

Fig. 12. Histogram of the outcome delay falling into Case 2 (JBSF), compared
to Staircase pdf ’s, with Tcut = 20ns and different values of s. The histogram
comprises 1,800 outcome delays, with SNRh = 30dB and ∆ovrs = 166ns.
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Such a distribution is fitted by a (properly shifted) “staircase”-
shaped function, i.e., a function with horizontal steps of
decreasing height (see Fig. 12). The width of the steps is
equal to the sampling period, while their height follows a
discrete power law, with exponent −s. The analytical form
of the Staircase is:

Staircase(t) ,
1

H
·
Ncut∑
i=1

(i−s) · rect(t− (i− 1)Ts), (12)

where H is a normalization factor, and Ncut is the number of
steps:

H =

Ncut∑
i=1

i−s (13)

Ncut =

⌊
Tcut
Ts

⌋
. (14)
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The cutting time Tcut represents the length of the Staircase.
The decreasing trend is due to the rightward search of JBSF,
because long searches are less probable than short ones. We
heuristically found that a power law fits the histogram better2

than other laws (e.g., exponential). The horizontal steps are
due to the time sampling, which introduces a uniform error
component.

On the other hand, the outcome delay of SB has a dis-
tribution exemplified by the histogram in Fig. 13. Such a
distribution is fitted by a (properly shifted) “flipped” Staircase
function (see Fig. 13). This shape is due to the fact that SB
searches a sample above the noise threshold like JBSF, but
with a leftward direction. Also here, long leftward searches
are less probable than short ones. This is modeled by the
increasing shape of the flipped Staircase.

C. Basic pdf for Case 3

In Case 3 (for both JBSF and SB), the outcome delay is
equivalent to an ordinary TOA estimation error of a receiver
that receives only the malicious signal. It does not follow a
SampledSharpYu pdf as in Case 1, because the adversarial
channel is Gaussian. In a Gaussian channel, the energy is con-
centrated in one pulse only, whose amplitude is not random.
Thus, the randomicity of the TOA estimation error stems from
the time sampling only.

The TOA estimation error of a receiver that receives only
the malicious signal follows a distribution exemplified by the
histogram in Fig. 14. Such a distribution is fitted by a Ts-wide
shifted rectangular function, whose analytical form is:

ShiftedRect(t) , rect(t− Tshft), (15)

where Tshft is a shift factor which depends on the adversarial
signal-to-noise ratio. The shift is due to the non-zero rise time
of the malicious pulse, which passes the noise threshold after
Tshft seconds. The lower the adversarial signal-to-noise ratio
is, the longer Tshft , because the malicious pulse passes the
noise threshold later in time. The trend of the Tshft parameter

2Again, in terms of mean log-likelihood (see Section VII).
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with respect to the adversarial signal-to-noise ratio will be
studied in the parametrization section (Section VII).

D. Probabilistic Model of the Attacked JBSF Algorithm
We model the outcome delay of an attacked JBSF algorithm

with the following composite pdf :

f(∆out) = a1·SampledSharpYuα(∆out−
⌈

∆land
Tpr

⌉
·Tpr )

+ a2·Staircases,Tcut (∆out−∆land )

+ a3·ShiftedRectTshft (∆out−∆ovrs). (16)

The multiplicative factors a1, a2, a3 are non-negative, and their
sum equals 1. They represent the probabilities that the attack
falls into, respectively, Case 1, Case 2, Case 3. The Staircase
of Case 2 starts from ∆land , which corresponds to the instant
that the jump-back lands on:

∆land , ∆ovrs + Tr − TJB . (17)

Equation 17 takes into account that the jump does not take off
from the beginning of the malicious pulse (i.e., from ∆ovrs ),
but from its peak (i.e., from ∆ovrs + Tr). The cutting time of
the Staircase is fixed to:

Tcut = Tpr − |∆ovrs + Tr − TJB |Tpr
. (18)

This value is such that the Staircase always ends at the position
of the malicious pulse, starting from which the attack falls into
Case 3.

E. Probabilistic Model of the Attacked SB Algorithm
We model the outcome delay of an attacked SB algorithm

with a long-search error probability (aerr ) and a composite pdf
of the outcome delay (f(∆out)). An overshadowing attack will
incur in a long-search error with aerr probability. Otherwise,
it will produce an outcome delay following the f(∆out) pdf,
which is given by:

(1−aerr )·f(∆out) = a′2·Staircases′,T ′cut
(−∆out+

⌊
∆ovrs
Tpr

⌋
·Tpr )

+ a1·SampledSharpYuα(∆out−
⌊

∆ovrs
Tpr

⌋
·Tpr )

+ a2·Staircases,Tcut (−∆out+∆ovrs)

+ a3·ShiftedRectTshft (∆out−∆ovrs). (19)
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The multiplicative factors a′2, a1, a2, a3 are non-negative, and
their sum equals 1−aerr . They represent the probabilities that
the attack falls into Case 1 (a1), Case 2 (a′2 and a2), and Case 3
(a3). Case 2 is split into components a′2 and a2, corresponding
to separate flipped Staircases. This is because the SB algorithm
can stop somewhere in the same period of the malicious pulse,
or it can continue searching, pass a replica of the leading peak,
and then stop somewhere in the precedent period. The former
case is captured by the a2 Staircase, the latter one by the
a′2 Staircase. The cutting times of the Staircases are fixed as
follows:

T ′cut =

⌊
∆ovrs

Tpr

⌋
· Tpr −∆ovrs + Tpr , (20)

Tcut = ∆ovrs −
⌊

∆ovrs

Tpr

⌋
· Tpr − TSB . (21)

These values are such that the a2 Staircase always ends at
the position of (a replica of) the leading peak, while the a′2
Staircase always ends where the long-search error occurs.

VII. MODEL’S PARAMETRIZATION AND EVALUATION

We parametrized our probabilistic models for a typical
residential environment (standard channel model CM1 [14])
and for a typical office environment (standard channel model
CM3 [14]). In order to determine the parameters, we pro-
ceeded as follows. We generated a number of outcome delay
samples by signal-level simulations of the TOA estimation
algorithm. Then, we tailored the parameters on these samples,
following a maximum goodness-of-fit criterium. In particular,
we determined those parameters that maximizes the mean log-
likelihood (L), defined as follows:

L ,
1

N

N∑
i=1

log f(∆out,i), (22)

where N represents the number of samples, and ∆out,i

represents the i-th sample. In the following, we show the
complete parametrization for the channel model CM1. The
parametrization for both channel models CM1 and CM3 is
included in the Matlab tool we make publicly available (see
below).

The parameter α can be studied separately, since the out-
come delay in Case 1 is equivalent to an ordinary TOA
estimation error of a non-attacked receiver. As a consequence,
it depends only on the legitimate signal-to-noise ratio. We
tailored the α parameter on 10,000 TOA estimation errors
of a non-attacked JBSF algorithm, with randomly generated
UWB channels following the standard statistical model of a
typical residential environment (CM1) [14]. Fig. 15 shows
the best-fitting α with respect to the legitimate signal-to-
noise ratio. As anticipated in Section VI, lower signal-to-
noise ratios correspond to higher α’s, which in turn make the
SampledSharpYu pdf spread towards the right. This catches
the fact that, with a lower signal-to-noise ratio, the first pulse
passes the noise threshold later in time.

Note that, as we said in Section IV, Case 1 captures also
the case in which a replica of the first pulse is identified as the
leading peak. This case happens only if ∆ovrs ≥ Tpr (both
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Fig. 15. Trend of α wrt the legitimate signal-to-noise ratio (CM1).

with JBSF and SB). However, pulse replicas after the first
period are attenuated (see Fig. 4). Accordingly, Case 1 with
∆ovrs ∈ [Tpr , 3Tpr ] must be parametrized with a greater α,
corresponding to an equivalent signal-to-noise ratio of SNRh−
6.0dB.

Also the parameter Tshft can be studied separately, since the
outcome delay in Case 3 is equivalent to a TOA estimation
error of a receiver that receives only the malicious signal.
As a consequence, it depends only on the adversarial signal-
to-noise ratio. We tailored the Tshft parameter on 10,000
TOA estimation errors of a JBSF algorithm receiving only
the malicious signal. Fig. 16 shows the best-fitting Tshft with
respect to the adversarial signal-to-noise ratio.
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Fig. 16. Trend of Tshft wrt the adversarial signal-to-noise ratio (CM1).

As anticipated in Section VI, lower adversarial signal-to-noise
ratios correspond to higher Tshft ’s. This catches the fact that
the malicious pulse passes the noise threshold later in time.

The other parameters (a1, a2, a3, s for the JBSF model,
and aerr , a′2, a1, a2, a3, s′, s for the SB model) depend
on the legitimate signal-to-noise ratio and the overshadow
delay. Notably, they do not depend on the adversarial signal-
to-noise ratio, as long as it is greater than the honest one.
We tailored these parameters on 10,000 outcome delays of
attacked TOA estimation algorithms, with randomly gener-
ated UWB channels following the CM1 statistical model.
We tested different overshadow delays, namely ∆ovrs =
1ns, 2ns, . . . , 384ns(= 3Tpr ). We fixed the adversarial signal-
to-noise ratio to SNRm = SNRh + 1dB. Fig. 17 shows the
best-fitting parameters of the JBSF and SB models. They
all have been estimated with the maximum goodness-of-fit
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Fig. 17. Parameters for the JBSF and SB models (CM1).

criterium, except of aerr , which has been estimated as the
percentage of long-search errors on the total TOA estimations.

A. Goodness-of-fit Tests

In order to check the soundness of our probabilistic models,
we estimated their goodness of fit (in terms of mean log-
likelihood) on 10,000 outcome delays of attacked TOA esti-
mation algorithms. We compared it with the goodness of fit of
some “naive” models, namely a Gaussian pdf (with the same µ
and σ of the samples) and a uniform pdf (uniform between the
min and the max samples). Fig. 18 shows such a comparison
for the JBSF and the SB model and for CM1 and CM3. It
can be seen that our probabilistic models better describes the
outcome of an overshadowing attack than reference models.

The likelihood comparison is a general purpose goodness-
of-fit test. In order to further evaluate the validity of our
probabilistic model we study its equivalence to the samples
in terms of security. More precisely, we define a metric,
namely the enlargement control probability (Pctrl ), which
expresses the probability that an adversary is able to introduce
a controlled enlargement. Given the objective delay (∆obj ) and

the objective precision (δa) of the adversary, the enlargement
control probability is defined as follows:

Pctrl , max
∆ovrs

Pr [|∆out −∆obj | ≤ δa] . (23)

The control probability is referred to the overshadowing attack
with the most convenient overshadow delay (i.e., the one that
maximizes the control probability). It can be computed from
the samples:

Pctrl = max
∆ovrs

samples in [∆obj − δa, ∆obj + δa)

total samples
, (24)

as well as from the probabilistic models:

Pctrl = max
∆ovrs

∫ ∆obj +δa

∆obj−δa
f(∆out)d∆out for JBSF, (25)

Pctrl = max
∆ovrs

(1−aerr )

∫ ∆obj +δa

∆obj−δa
f(∆out)d∆out for SB. (26)

We compared the control probability computed from the
samples, to the one computed from the probabilistic models.
Fig. 19 shows such a comparison for CM1 and CM3. We see
that the control probabilities computed by our models closely
follow those estimated by the samples. This corroborates
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Fig. 18. Mean log-likelihood of our probabilistic models compared to
reference models, with SNRh = 30dB.

the validity of our probabilistic models for security-focused
simulations.

Finally, we developed a Matlab tool3 based on our proba-
bilistic models. The tool is capable of generating efficiently
the random outcome of an overshadowing attack, without per-
forming burdensome signal-level simulations. It takes as input
the TOA estimation algorithm, the legitimate and adversarial
signal-to-noise ratios, the overshadow delay, and the channel
model. The tool can simulate non-attacked TOA estimations as
well, which is useful to evaluate the non-malicious scenario.

VIII. CONCLUSIONS

In this paper, we provided a probabilistic model of the
outcome of an overshadowing attack against a distance bound-
ing protocol realized with IEEE 802.15.4a UWB. Our model
takes into consideration several variables, like the propagation
environment, the signal-to-noise ratio, and the TOA estima-
tion algorithm. We evaluated the soundness of our model
by comparing it to attack outcomes generated by physical-
layer simulations, and by performing goodness-of-fit tests. The
results showed that our model is sufficiently realistic to replace
physical-layer simulations. We finally developed a Matlab
tool based on our model, capable of simulating attacked and
non-attacked TOA estimations. The tool allows researchers to
evaluate the security of the ranging/positioning solutions that
can be subject to enlargement attacks. We made such a tool
available to the research community.
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Fig. 19. Control probability of the adversary, computed by means of the
model and by means of the samples. The adversarial signal-to-noise ratio is
SNRm = 30dB. The objective precision of the adversary is δa = 0.5ns,
which is a reasonable precision for UWB ranging systems.
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